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Abstract 
 
A new algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, for the simulation of Couette-

Taylor gas flow problem is developed. The Taylor series expansion is used to obtain the modified equation of the first-
order time discretization of the collision equation and the new algorithm, MDSMC, is implemented to simulate the 
collision equation in the Boltzmann equation. In the new algorithm (MDSMC) there exists a new extra term which 
takes in to account the effect of the second order collision. This new extra term has the effect of enhancing the appear-
ance of the first Taylor instabilities of vortices streamlines. In the new algorithm (MDSMC) there also exists a second 
order term in time step in the probabilistic coefficients which has the effect of simulation with higher accuracy than the 
previous DSMC algorithm. The appearance of the first Taylor instabilities of vortices streamlines using the MDSMC 
algorithm at different ratios of ω ν  (experimental data of Taylor [1]) occurred at less time-step than using the DSMC 
algorithm. The results of the torque developed on the stationary cylinder using the MDSMC algorithm show better 
agreement in comparison with the experimental data of Kuhlthau [2] than the results of the torque developed on the 
stationary cylinder using the DSMC algorithm. 
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1. Introduction 

In the gas flow problems where the length scale of 
the system is comparable to the mean free path for 
molecules in the gas flow the concept of the contin-
uum is no more valid, Knudsen number greater than 
0.1 [3]. In this case the simulation is done using the 
Direct Simulation Monte-Carlo (DSMC) or the Colli-
sional Boltzmann Equation (CBE) methods. In most 
cases the direct solution of the CBE is impracticable 
due to the huge number of molecules, however most 
of the time; the implementation of the DSMC is more 
practicable. 

So far the rarefied gas flow problems are simulated 

using the DSMC algorithm by Vogenitz et al. [4], 
Stefanov et al. [5], Bird G. A. [3] & [6], Shinagawa et 
al. [7] and Myong [8]. The DSMC algorithm is used 
in the flow simulation of the previous researchers and 
the results of the simulations show some discrepan-
cies when compared with the experimental data. For 
example Vogenitz et al. [4], studied the theoretical 
and experimental aspects of the rarefied supersonic 
flow about several simple shapes (sphere, cylinder, 
cone and wedge). Their results of simulation show 
less discrepancy at high Knudsen number than low 
Knudsen number when compared with measurements. 

The Couette-Taylor gas flow is simulated using the 
DSMC algorithm by Stefanov and Cercignani [5]. 
The formation of the Taylor instabilities of vortices is 
clearly exhibited. The unsteady axially symmetric and 
three-dimensional Couette-Taylor flow is simulated 
by Bird [6]. In this work, the current status of the 
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DSMC algorithm is reviewed with particular empha-
sis on its range of validity, the extent of its validation 
against experiment, and the DSMC applications to the 
study of flow instabilities are discussed. 

The simulation of the rarefied gas flow through cir-
cular tube of finite length in the transitional regime at 
both low Knudsen number and high Knudsen number 
are done using the DSMC algorithm by Shinagawa et 
al. [7] and Myong [8]. 

In this study we would like to develop a new algo-
rithm to simulate the collision equation in the Boltz-
mann equation with higher accuracy than the previous 
algorithms available in the literature. 

 
1.1 Purpose of the present work 

So far the rarefied gas dynamic problems, when the 
Knudsen number is large enough, are simulated using 
the first-order time discretizations of the Boltzmann 
equation [3]. The Boltzmann equation is split in time 
in to purely convective equation (collision term is 
zero) and purely collision equation (convective term 
is zero). The collision equation is discretized in time 
by the first-order Euler scheme and the probabilistic 
interpretation of the discretized equation breaks down 
when the ratio tµ ε∆ is large enough, [9-14]. How-
ever in the present work our goal is to develop a new 
algorithm which considers the effects of the trunca-
tion errors in the time discretization of the first-order 
Euler scheme for the collision equation in order to 
achieve more accurate probabilistic interpretations. 
To achieve this goal, we write the modified equation 
of the first-order Euler scheme using the Taylor ex-
pansion series and then we capture the higher order 
truncated terms. In the present work due to the limita-
tion of the computing time we are limited to choose 
only the first two terms in the Taylor expansion series. 
The detail of the derivation of our new algorithm 
which we call that modified direct simulation Monte-
Carlo (MDSMC) algorithm is presented in the section 
2b the MDSMC algorithm. 
 

2. Mathematical formulations 

2.1 The boltzmann equation 

The Boltzmann equation is written as, [15]: 

( ) ( ) ( ) ( ) ( )( )

( )
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r
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  (1) 
In Eq. (1), ( )vf is the nonnegative density prob-

ability distribution function of molecule of class hav-
ing the velocity of v , ( )*vf  is the nonnegative 
density probability distribution function of the mole-
cule of class having the velocity of *v , ( )vf ′ is the 
post-collision nonnegative density probability distri-
bution function of the molecule of class having the 
velocity of v′ , and ( )*vf ′ is the post-collision non-
negative density probability distribution function of 
the molecule of class having the velocity of *v′ and 
Ω  is the angle in the spherical coordinates. The 
( ),Q f f is the integral collision which describes the 

binary collisions of the molecules. The kernel σ  is a 
non negative function which is described, [11-14]: 

 
( ) ( )* *v v , v vb α

ασ θ− Ω = − ⋅   (2) 

 
Where, θ  is the scattering angle between *v v−  
and *v v− Ω . The variable hard sphere (VHS), [3], 
model is often used in numerical simulation of rare-
fied gases, where, ( )b Cα θ =  with C  a positive 
constant and 1α = . The value of C  is equal to 
(Bird, 1994), TC σ= ,where Tσ is the collision cross 
section and is equal 2 4dπ ⋅  
 
2.2 The MDSMC algorithm 

Splitting equation 1, the Boltzmann equation, [16], 
into equation for the effect of collision, rv 0f⋅∇ ≡ , 
and equation for the effect of convection, ( ), 0Q f f ≡ . 
The equation for the effect of convection is written as, 
[11-14]: 

 

rv 0  .f f
t

∂
+ ∇ =

∂
  (3) 

 
And the equation for the effect of collision is writ-

ten as, [11-14]: 
 

( )1 ,   ,f Q f f
t ε

∂
=

∂
  (4) 
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and the collision term is written as: 
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Where, ( ) ( )
4
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0

v v v v v v vT Tf d d d
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( )
4

* *
0

v vf d
π

∫ mκρ= is the mean collision frequency 

for the molecules having velocity v , ρ  is the density 
of the gas, m is the mass of a molecule of the 

gas,κ is a molecular constant 
4

*0
v vT d

π
κ σ= − Ω∫  

and ( )* *v vm f dρ
+∞

−∞
= ∫  [17]. In special case in 

which *v vTσ −  is independent of *v v−  (Max-

wellian molecules), we have: 
 

( )v .
m
κρµ µ= =    (6) 

 
Substituting Eq. (6) into Eq. (5) and then into Eq. 

(4): 
 

( ) ( )1 1, ,f Q f f P f f f
t

µ
ε ε

∂
= = ⎡ − ⎤ ⋅⎣ ⎦∂

  (7) 

 
The first order time discretization of Eq. (7) is writ-

ten as: 
 

( )1
,

1
n n

n n
P f ft tf fµ µ

ε ε µ
+ ∆ ∆⎛ ⎞= − + ⋅⎜ ⎟

⎝ ⎠
  (8) 

 
The probabilistic interpretation of Eq. (8) is the fol-

lowing. In order a particle is sampled from 1nf + , a 
particle is sampled from nf with probability of 
( )1 tµ ε− ∆  and a particle is sampled from 
( ),n nP f f µ  with probability of tµ ε∆ . It is to be 

noted that the above probabilistic interpretation fails if 

the ratio of tµ ε∆ is too large because the coefficient 
of nf on the right hand side may become negative, 
[9-14]. 

In our algorithm, we write for 1nf +  Taylor series 
expansion as: 
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The second order derivative, 2 2f t∂ ∂ , in equation 

9 is written as: 
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Substituting equation10 for the value of 2 2f t∂ ∂  

and equation 7 for the value of f t∂ ∂  into Eq. (9): 
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The ( ) ( ) ( )
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is the bilinear operator describing the collision effect 
of two molecules. The time derivative of ( ),n nP f f  
is written as: 
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The time discretization of ( ),n nP f f t∂ ∂ is writ-

ten as: 
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Substituting for ( ) ( )
4
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( )* * f v d dv′ Ω into Eq. (13): 
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Substituting Eq. (14) into Eq. (11): 
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where ( )1 ,n n nf P f f µ= .Rearranging and truncating 
terms higher than the second order in Eq. (15): 
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The probabilistic interpretation of Eq. (16) is    

the following. In order a particle is sampled from 1nf + , 
a particle is sampled from nf with probability      
of ( )( )22 21 2t tµ ε µ ε− ∆ + ∆ , a particle is sam-  
pled from ( ),n nP f f µ  with probability of 

( )( )22 22 2t tµ ε µ ε∆ − ∆  and a particle is sampled 
from ( )1 ,n nP f f µ with probability of 2tµ ε∆ . 
Comparing equation 16, the new algorithm 

(MDSMC), with equation 8 (the DSMC algorithm) 
reveals two facts as follows: 1) Eq. (17), the new 
algorithm (MDSMC), consists of three terms that are 
sampled probabilistically, however Eq. (8) (the 
DSMC algorithm) consists of two terms that are sam-
pled probabilistically, the third extra term in Eq. (16), 
( )1 ,n nP f f µ , is interpreted as the collision between 

the particles sampled from nf and the particles sam-
pled from ( ),n nP f f µ  2) the probabilistic coeffi-
cients in Eq. (17), the new algorithm (MDSMC), 
consist of the second order terms in time step how-
ever the probabilistic coefficients in Eq. (8) (the 
DSMC algorithm) consist of the first order terms in 
time step. 
 

3. Analytical solutions 

The energy E of a particle in an axially symmetric 
gas flow inside a rotating cylinder is given as, [18], 

 

( ) 2 2 21 1 .
2 2

E r I mrω ω= =   (17) 

 
The rotational effect is the same of additional ex-

ternal field acting on the system and may be written 
as: 

( ) 2 2 21 1 .
2 2
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Using the Boltzmann distribution for the particle 

number density and substituting for ( )U r  from Eq. 
(18): 
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the normalization factor A in Eq. 19, is determined 
by ( )N n r dV= ∫ : 
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Then the normalization factor A is 
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Substituting for A into Eq. (20): 
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π ω
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Where, N  is the total number of molecules, m  is 
the mass of a molecule of gas, ω  is the angular ve-
locity, k  is the Boltzmann constant, T  is the abso-
lute temperature, L  is the length of the cylinder, R  
is the cylinder radius and r  is the radial distance. 
 

4. The numerical procedures 

4.1 The DSMC Algorithm (the VHS collision model 
molecules): 

• for all particles 
- Compute an upper bound ( )2max v v 4i jdσ π⎡ ⎤= −⎣ ⎦ 
for the cross section, σ is updated in each colli-
sion. 

- Set 4µ πσ= . 
- Set ( )/(2 )cN Iround N tµ ε= ∆ . 
- Select 2 cN dummy collision pairs ( ),i j uni-
formly among all possible pairs, and for those. 

- Compute the relative cross section 2
ij dσ π=  

v v 4i j− . 
- Generate uniform random numbers Rand . 
- If ijRand σ σ<  
· Perform the collision between i  and j , and 
compute the post-collision velocities *vi and *v j . 

· Set 1 *v vn
i i
+ = , 1 *v vn

j j
+ = . 

· else 
· Set 1v vn n

i i
+ = , 1v vn n

j j
+ = . 

· Set 1v vn n
i i
+ =  for the 2i cN N−  particles that 

have not been selected. 
· End for 

During each step, all the other 2i cN N−  particle 
velocities remain unchanged. 

 
4.2 The MDSMC Algorithm (the VHS collision 

model molecules): 

• for tot1  ntn to=  
- Compute an upper bound, σ . 
- Set 4µ πσ= . 
- Compute 

( )
1

22

22 2 2 4 2c

tN t N tN Iround
µµ µ

ε ε ε

⎛ ⎞⎛ ⎞∆∆ ∆⎛ ⎞⎜ ⎟⎜ ⎟= + + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. 

- Select 
1

2 cN dummy collision pairs ( ),i j  uni-
formly among all possible pairs. 

- Compute the relative cross section ijσ . 
- Generate uniform random numbers ( Rand ). 
- If ijRand σ σ<  
· Perform the collision between i  and j , and 
compute the post-collision velocities *vi and *v j . 

- Set
2 2 2c

N tN Iround µ
ε

⎛ ⎞∆⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

- Select 
2cN particles among those that have not 

collided and select 
2cN  particles among those 

that have collided. 
- Compute the relative cross section ijσ . 
- Generate uniform random numbers ( Rand ). 
- If ijRand σ σ<  
· Perform the collision between i  and j , and 
compute the post-collision velocities *vi and *v j . 

· Set 1v vn n
i i
+ =  for all the

1 2
2 c cN N N− − particles 

that have not been selected. 
• End for 

 

5. Discussions of results 

5.1 Description of case study problems 

In order to validate our new algorithm we consider 
three different case study problems, in the first case 
study problem the number density of argon in a rotat-
ing cylinder is simulated using the MDSMC and 
DSMC algorithms, with 7.870515094×1020 real mole-
cules, 120000 model molecules and 50000 (1000×50) 
total number of cells, and the results of the simulation 
are compared with the analytical solution. The radius 
of the cylinder is 0.01m and its length is 0.2m and 
rotates with angular velocity of15900rev s . The gas 
inside the cylinder is Argon (Ar) with the initial tem-
perature of 300K and the initial pressure of 3.0Pa  
absolute. In the second and third case study problems 
the Couette-Taylor flow is simulated using the 
MDSMC and DSMC algorithms, with 2.414370721× 
1021 real molecules, 120000 model molecules and 
5000 (250×20) total number of cells, and the results 
of the simulation are compared with the experimental 
data of Taylor, G. I., [1] and Kuhlthau, A. R., [2]. For 
the comparison purposes we choose the same case 
study problems depicted by Taylor, G. I., [1] and 
Kuhlthau, A., [2] respectively. 
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5.2 Comparisons of the number density results with 

the analytical solution 

Fig. 1 shows the comparison of the analytical solu-
tion of the number density of the argon gas inside a 
rotating cylinder with the results of the MDSMC and 
the DSMC simulations. The comparison of the results 
of the number density using the MDSMC algorithm 
with the analytical solution shows closer agreement 
than the results of the number density using the 
DSMC algorithm. The agreement between our results 
of the number density using the MDSMC algorithm is 
more pronounced than the results of the number den-
sity using the DSMC algorithm in the region closer to 
the center of the cylinder. Furthermore, the fluctua-
tions of the number density results using the MDSMC 
algorithm are less than the fluctuations of the number 
density results using the DSMC algorithm in the re-
gion closer to the center of the cylinder. 

Figs. 2(a), 2(b), 2(c) and 2(d) show the results of 
the streamlines and the density contours using the 
MDSMC and the DSMC algorithms and the results of 
the streamlines and the temperatures contours using 
the MDSMC and the DSMC algorithms respectively. 
The results of the streamlines, the density contours 
and the temperatures using the MDSMC have less 
fluctuation than the results of the DSMC simulations. 
This is in agreement with the results of the simulation 
using the MDSMC and the DSMC algorithms for the 
number density in Fig. 1. 

 
5.3 Comparisons of the results of Couette-Taylor 

flow simulations with experiments of Taylor 

The first Taylor instabilities of vortices streamlines 
 

  
Fig. 1. Comparison of the analytical solution of the number 
density with the results of the MDSMC and the DSMC algo-
rithms. 

 

 

 

 
 
Fig. 2. the streamlines, the constant density contours and the 
constant temperature contours: (a) the streamlines and the 
constant density contours using the MDSMC algorithm, (b) 
the streamlines and the constant density contours using the 
DSMC algorithm, (c) the streamlines and the constant tem-
perature contours using the MDSMC algorithm, (d) the 
streamlines and the constant temperature contours using the 
DSMC algorithm. 
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Fig. 3. Streamlines: (a) using the MDSMC algorithm at 
Ta=2.797295199×10-5 after 16000 iterations, (b) using the 
DSMC algorithm at Ta=2.797295199×10-5 after 24000 itera-
tions. 

 
in the Taylor, [1] experiment appear at the ratios of 

230.3rad mων = , 270.7rad mων =  and 189.2ω ν =  
2rad m , where these values of the ratioω ν corre-

spond to three geometries in the Taylor, [1] experi-
ment as follows; the first geometry consists of 

1 3.0 ,R cm= 2R 4.035cm=  and  L=20.32cm,  the 
second geometry consists of 1 3.55 ,R cm=  2R =  
4.035cm  and L=20.32cm  and the third geometry 
consists of 1 3.8R cm= , 2R 4.035cm=  and L=20.32cm , 
where 1R is the outer radius of the inner cylinder, 

2R is the inner radius of the outer cylinder and L is 
the height of the cylinder. Figs. 3(a) and 3(b) show 
the results of the Taylor instabilities of vortices 
streamlines at the ratio of 230.0rad mω ν = using 
the MDSMC and the DSMC algorithms respectively. 
The first Taylor instabilities of vortices streamlines 
using the MDSMC and the DSMC algorithms appear 
at the ratio of 230.0rad mω ν = , whereas in the 
experiment of Taylor, [1] the first Taylor instabilities 
of vortices streamlines appear at the ratio of 

230.3rad mω ν = . The results of the Taylor insta-
bilities of vortices streamlines using the MDSMC 
algorithm appear after 16000 iterations, whereas the  

 

  
Fig. 4. Streamlines: (a) using the MDSMC algorithm at 
Ta=1.984493354×10-5 after 10000 iterations, (b) using the 
DSMC algorithm at Ta=1.984493354×10-5 after 24000 itera-
tions. 

 

 

  
Fig. 5. Streamlines: (a) using the MDSMC algorithm at 
Ta=1.743022053×10-5 after 10000 iterations, (b) using the 
DSMC algorithm at Ta=1.743022053×10-5 after 23000 itera-
tions. 
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results of Taylor instabilities of vortices streamlines 
using the DSMC appear after 24000 iterations.   
Figs. 4(a) and 4(b) show the results of the Taylor 
instabilities of vortices streamlines at the ratio of 

270.7 rad mω ν =  using the MDSMC and the 
DSMC algorithms respectively. The first Taylor in-
stabilities of vortices streamlines using the MDSMC 
and the DSMC algorithms appear at the ratio 
of 270.0rad mω ν = , whereas in the experiment of 
Taylor, [1] the first Taylor instabilities of vortices 
streamlines appear at the ratio of 270.0rad mω ν = . 
The first Taylor instabilities of vortices streamlines 
using the MDSMC algorithm appear after 10000 
iterations, whereas the first Taylor instabilities of 
vortices streamlines using the DSMC appear after 
24000 iterations. Figs. 5(a) and 5(b) show the results 
of the Taylor instabilities of vortices streamlines at 
the ratio of 2189.0rad mω ν =  using the MDSMC 
and the DSMC algorithms respectively. The first 
Taylor instabilities of vortices streamlines using the 
MDSMC and the DSMC algorithms appear at the 
ratio of 2189.0rad mω ν = , whereas in the experi-
ment of Taylor the first Taylor instabilities of vortices 
streamlines appear at the ratio of 2189.2rad mω ν = . 
The first Taylor instabilities of vortices streamlines 
using the MDSMC algorithm appear after 10000 
iterations, whereas the first Taylor instabilities of 
vortices streamlines using the DSMC appear after 
23000 iterations. Therefore, the effect of the new 
algorithm (MDSMC) in the simulation is to enhanc-
ing the appearance of the Taylor instabilities of vor-
tices streamlines. 

 
5.4 Comparisons of the results of Couette-Taylor 

flow simulations with experiments of Kuhlthau 

The torque developed on the outer cylinder in the 
Couette-Taylor flow is measured by Kuhlthau, [2]. 
The geometry of Couette-Taylor flow in Kuhlthau, 
[2] experiment consists of 1 5.08R cm= , 2R 6.35cm=  
and L=3.81cm  where 1R is the outer radius of the 
inner cylinder, 2R is the inner radius of the outer cyl-
inder and L is the height of the cylinder. The pres-
sure of the gas in the space between the two cylinders 
is 100 m Hgµ  and the inner cylinder rotates at six 
different angular velocities of 400, 800, 1000, 1200,  
1400 and 1600 Rev Sec . The results of the torque 
developed on the outer cylinder using the MDSMC 
and the DSMC algorithms are compared with the 
experimental data of Kuhlthau, [2]. Fig. 6 shows the  

Table 1. shows the comparison of the results of the torque 
developed on the stationary cylinder using the MDSMC and 
DSMC algorithms with the experimental data of Kuhlthau 
(1960). 
 

Rotational 
Velocity 

(R/S) 

Calculated 
Torque of the 

MDSMC 
(N.m)×10 4 

Calculated 
Torque of 
the DSMC 
(N.m)×10 4

Measured 
Torque by 
Kuhlthau 
(1960) 

(N.m)×10 4 

Error in 
Calculation 
MDSMC 

with Meas-
urement 

Error in 
Calculation 

DSMC 
with 

Measure-
ment 

400 1.62 1.77 1.6949 4.419% 4.4309%

800 3.37422 3.76574 3.5593 5.2% 5.8% 

1000 3.991 4.6409 4.3051 7.3% 7.8% 

1200 4.92 6.09 5.3898 8.71% 12.99%

1400 5.99 7.26 6.4407 7.0% 12.72%

1600 8.093 9.4611 8.7119 7.1% 8.6% 

 

 
 
Fig. 6. Comparison of experimental data of the developed 
torque on the stationary cylinder using the MDSMC and 
DSMC algorithms. 
 
comparison of the experimental data of the developed 
torque on the stationary cylinder with the results of 
simulation using the MDSMC and DSMC algorithms 
at six different angular velocities of 400, 800  
1000, 1200, 1400 and 1600 Rev Sec . The compari-
son of the present results of simulation with the ex-
perimental data of Kuhlthau, [2] show that the results 
of simulation using the MDSMC are in closer agree-
ment than the results of simulation using the DSMC 
algorithm. Table 1 shows the error associated with  
the torque developed on the stationary cylinder using 
the MDSMC and DSMC algorithms at six different 
angular velocities of 400, 800, 1000, 1200, 1400 and  
1600 Rev Sec  when compared with the experimen-
tal data .The errors associated with the results of the 
torque using the MDSMC are less than the errors of 
the results of the torque using the DSMC when com-
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pared with the experimental data. 
 

6. Conclusions 

Comparing the results of the simulation with the 
experimental data shows that the new algorithm de-
veloped in the present work (the MDSMC algorithm) 
has the capability of simulating the Couette-Taylor 
gas flow problem with higher accuracy than the pre-
vious DSMC algorithm. The appearance of the first 
Taylor instabilities of the vortices streamlines using 
the MDSMC algorithm is enhanced when compared 
with the appearance of the first Taylor instabilities of 
the vortices streamlines using the DSMC algorithm. 
These are due to the facts that, in the new algorithm 
(MDSMC) there exists a new extra term 
( )1 ,n nP f f µ  which takes in to account the effect of 

the collision between the particles sampled 
from nf and the particles sampled from 
( ),n nP f f µ  which we call that the second order 

collision term. This new extra term has the effect of 
enhancing the appearance of the first Taylor instabili-
ties of vortices streamlines. Finally in the new algo-
rithm (MDSMC) there exists a second order term in 
time step in the probabilistic coefficients which has 
the effect of simulation with higher accuracy than the 
previous DSMC algorithm. 
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